
Prepared for
Hyperliquid Protocol Foundation
The Hyperliquid contributors

Prepared by
Filippo Cremonese
YuhangWu
Zellic

November 27, 2023

Hyperliquid
Smart Contract Patch Review



Hyperliquid Smart Contract Patch Review November 27, 2023

Contents About Zellic 3

1. Executive Summary 3

1.1. Goals of the Assessment 4

1.2. Non-goals and Limitations 4

1.3. Results 5

2. Introduction 5

2.1. About Hyperliquid 6

2.2. Methodology 6

2.3. Scope 8

2.4. Project Overview 8

2.5. Project Timeline 9

3. Discussion 9

3.1. Changes since previous assessment 10

3.2. Error handling in depositWithPermit 11

4. Assessment Results 11

4.1. Disclaimer 12

Zellic © 2023 ← Back to Contents Page 2 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

About Zellic Zellic was founded in 2020 by a team of blockchain specialists withmore than a decade of com-
bined industry experience. We are leading experts in smart contracts and Web3 development,
cryptography, web security, and reverse engineering. Before Zellic, we founded perfect blue ↗,
the top competitive hacking team in the world. Since then, our team has won countless cyber-
security contests and blockchain security events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual, unique con-
cerns and business needs. Our goal is to see the long-term success of our partners rather than
simply provide a list of present security issues. Similarly, we strive to adapt to our partners’ time-
linesand tobeasavailable aspossible. To keepupwithour latest endeavors and research, check
out ourwebsite zellic.io ↗ or follow@zellic_io ↗ on Twitter. If you are interested in partneringwith
Zellic, please contact us at hello@zellic.io ↗.

Zellic © 2023 ← Back to Contents Page 3 of 12

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Hyperliquid Smart Contract Patch Review November 27, 2023

1. Executive Summary Zellic conducteda security assessment for TheHyperliquid contributors fromNovember 23rd to
November 24th, 2023. During this engagement, Zellic reviewed Hyperliquid’s code for security
vulnerabilities, design issues, and general weaknesses in security posture.

The engagement was exclusively focused on the changes made since the previous security
assessment, specifically in commits 204f017e ↗, 2ad53ac9 ↗, and 9189a7dd ↗.

1.1. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that wewish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Is the interaction between thebridge andL1, aswell as the locking logic, implemented
correctly and securely?

• Are there any vulnerabilities present in the bridge that could potentially be exploited
to steal funds?

• Are thereanybugs that result inbehavior thatdeviates fromthe intendedL1behavior?
This includes issues such as misbehaving validators or malfunctioning validator set
transitions.

1.2. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Other smart contracts part of the Hyperliquid system
• Off-chain components, such as validators
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

The engagementwas exclusively limited to the changesmade in commits 204f017e ↗, 2ad53ac9
↗, and 9189a7dd ↗.

Zellic © 2023 ← Back to Contents Page 4 of 12

https://github.com/hyperliquid-dex/contracts/commit/204f017e52954d9c6814f1427bb66aa78bc6c07c
https://github.com/hyperliquid-dex/contracts/commit/2ad53ac96bd6103b4194ace23041fc20fedd96a9
https://github.com/hyperliquid-dex/contracts/commit/9189a7ddeb410e835548c1190414949f04311bfa
https://github.com/hyperliquid-dex/contracts/commit/204f017e52954d9c6814f1427bb66aa78bc6c07c
https://github.com/hyperliquid-dex/contracts/commit/2ad53ac96bd6103b4194ace23041fc20fedd96a9
https://github.com/hyperliquid-dex/contracts/commit/2ad53ac96bd6103b4194ace23041fc20fedd96a9
https://github.com/hyperliquid-dex/contracts/commit/9189a7ddeb410e835548c1190414949f04311bfa


Hyperliquid Smart Contract Patch Review November 27, 2023

1.3. Results

During our assessment on the scoped Hyperliquid contracts, there were no security
vulnerabilities discovered.

Zellic recorded its notes and observations from the assessment for The Hyperliquid
contributors’s benefit in the Discussion section (3. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 0

■ Low 0

■ Informational 0

Zellic © 2023 ← Back to Contents Page 5 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

2. Introduction 2.1. About Hyperliquid

Hyperliquid is an order-book perpetual futures DEX. Hyperliquid runs on its own L1, a purpose-
built blockchain using the Tendermint SDK that is performant enough to operate the whole plat-
form —every order, cancel, trade, and liquidation happens transparently on chain with block la-
tency < 1 second.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing,
including both automated testing and manual review. These processes can vary significantly
per engagement, but themajority of the time is spent on a thoroughmanual review of the entire
scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily
on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by code
review. Depending on the engagement, we may also employ sophisticated analyzers
such as model checkers, theorem provers, fuzzers, and so on as necessary. We also
perform a cursory review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time
permitting, we also review the contract logic to ensure that the code implements the
expected functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks, oracle
pricemanipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality standards.
We also provide suggestions for possible optimizations, such as gas optimization,
upgradability weaknesses, centralization risks, and so on.

For eachfinding, Zellic assigns it an impact ratingbasedon its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low,

Zellic © 2023 ← Back to Contents Page 6 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

and Informational.

Zellic organizes its reports such that the most important findings come first in the document,
rather than being strictly ordered on impact alone. Thus, we may sometimes emphasize an
“Informational” finding higher than a “Low” finding. The key distinction is that although certain
findings may have the same impact rating, their importance may differ. This varies based on
various soft factors, like our clients’ threat models, their business needs, and so on. We aim to
provide useful and actionable advice to our partners considering their long-term goals, rather
than a simple list of security issues at present.

Finally, Zellicprovidesa list ofmiscellaneousobservations thatdonothavesecurity impactorare
not directly related to the scoped contracts itself. These observations— found in the Discussion
(3. ↗) sectionof thedocument—may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2023 ← Back to Contents Page 7 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

2.3. Scope

The engagement involved a review of the following targets:

Hyperliquid Contracts

Repository https://github.com/hyperliquid-dex/contracts ↗

Versions 204f017e52954d9c6814f1427bb66aa78bc6c07c
2ad53ac96bd6103b4194ace23041fc20fedd96a9
9189a7ddeb410e835548c1190414949f04311bfa

Programs • Bridge2.sol
• Signature.sol

Type Solidity

Platform Arbitrum

2.4. Project Overview

Zellic was contracted to perform a security assessment with two consultants for a total of three
person-days. The assessment was conducted over the course of two calendar days.

Zellic © 2023 ← Back to Contents Page 8 of 12

https://github.com/hyperliquid-dex/contracts


Hyperliquid Smart Contract Patch Review November 27, 2023

Contact Information

The following project manager was associ-
ated with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Filippo Cremonese
Engineer
fcremo@zellic.io ↗

YuhangWu
Engineer
yuhang@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

November 23, 2023 Start of primary review period

November 24, 2023 End of primary review period

Zellic © 2023 ← Back to Contents Page 9 of 12

mailto:chad@zellic.io
mailto:fcremo@zellic.io
mailto:yuhang@zellic.io


Hyperliquid Smart Contract Patch Review November 27, 2023

3. Discussion Thepurpose of this section is to documentmiscellaneous observations thatwemadeduring the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

3.1. Changes since previous assessment

The following changes were observed in the in-scope commits:

Withdrawals support specifying destination

Withdrawals now support specifying a destination, instead of assuming the destination is
msg.sender. All the information regarding the withdrawal, including user, destination, and
amount, still require a valid signature from a supermajority of the validators to take effect.

Batch functions

A batch variant of requestWithdrawalwas introduced. This change required to move the non-
Reentrant modifier to the public batch versions. This does not introduce a security issue be-
cause the nonbatch variant has been restricted to internal visibility. We note that the whenNot-
Pausedmodifier could be removed in the internal function for aminor gas-efficiency gain.

All nonbatch variants are now not directly externally reachable; the batch variants call the non-
batch variants to process each operation. Because of this, the nonbatch variants weremodified
to log an event and return early instead of reverting if an error occurs. This is required to pre-
vent a single error from reverting an entire batch of operations. We note that this is only partially
effective, as reverts originating from external calls are not caught and will therefore revert the
entire batch.

Support deposits using ERC20Permit

Two new functions, batchedDepositWithPermit and depositWithPermit, were introduced to
support depositing on behalf of a third party using a signature via the ERC20Permit interface.

Configurable locker threshold required to lock the bridge

Locking (pausing) the bridge now requires votes from a configurable number of lockers.

Changing the threshold requires signatures froma two-thirds supermajority of the cold validator
set.

Lockers can vote to pause and can also revoke their vote, but they cannot unpause the contract,
which requires a two-thirds supermajority of the cold validators.

Adding and removing lockers still require a supermajority of the hot validators.

Minor change to the required validator power

The checkValidatorSignatures function was changed to require the cumulative power of the
signatures being processed to be greater than two thirds of the total voting power of all the val-

Zellic © 2023 ← Back to Contents Page 10 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

idators.

Previously, the function required the cumulative power to be greater than or equal to the two-
thirds threshold.

Otherminor changes

This includes the following:

• The changeDisputePeriodSeconds does not require the contract to not be paused.
• The invalidateWithdrawals does not require the contract to not be paused, and it
emits one event per invalidated withdrawal instead of a single event with all invali-
datedwithdrawals.

• The changeBlockDurationMillis does not require the contract to be paused.

Usage of correct source for block number

Arbitrum block.number lags behind the actual block.number onmainnet Ethereum. The equiv-
alent of the EthereumMainnet block number is obtained using facilities specifically provided by
Arbitrum.

3.2. Error handling in depositWithPermit

The function depositWithPermit allows a user to deposit USDC into the contract with a per-
mit signature, bypassing the need for a separate approval transaction. The function’s current
implementation includes a try-catch block surrounding the permit call but not the subsequent
safeTransferFrom call.

Ideally, safeTransferFrom could not fail unexpectedly, but it is better to put the entire function
in a try-catch block to catch any unexpected errors. This will make the function more clear and
robust, and also the user will be able to see the error message.

Zellic © 2023 ← Back to Contents Page 11 of 12



Hyperliquid Smart Contract Patch Review November 27, 2023

4. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the ArbitrumMainnet.

During our assessment on the scoped Hyperliquid contracts, there were no security vulnerabil-
ities discovered.

4.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its
scope; in other words, the evaluation results do not guarantee the absence of any subsequent
issues. Zellic, of course, also cannot make guarantees about any code added to the project af-
ter the version reviewed during our assessment. Furthermore, because a single assessment
can never be considered comprehensive, we always recommendmultiple independent assess-
ments paired with a bug bounty program.

For eachfinding, Zellic provides a recommendedsolution. All code samples in these recommen-
dations are intended to convey how an issuemay be resolved (i.e., the idea), but theymay not be
tested or functional code. These recommendations are not exhaustive, and we encourage our
partners to consider them as a starting point for further discussion. We are happy to provide
additional guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not con-
strue any information in this report as legal, tax, investment, or financial advice. Nothing con-
tained in this report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2023 ← Back to Contents Page 12 of 12


	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Hyperliquid
	Methodology
	Scope
	Project Overview
	Project Timeline

	Discussion
	Changes since previous assessment
	Error handling in depositWithPermit

	Assessment Results
	Disclaimer


