
Hyperliquid

Smart Contract Security Assessment

August 14, 2023

Prepared for:

Hyperliquid Protocol Foundation

Prepared by:

Filippo Cremonese, Kuilin Li, and Daniel Lu

Zellic Inc.



Contents

About Zellic 3

1 Executive Summary 4

1.1 Goals of the Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Non-goals and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction 6

2.1 About Hyperliquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Detailed Findings 9

3.1 Withdrawal finalization does not work . . . . . . . . . . . . . . . . . . . 9

3.2 Disputed actions are not blocked by validator rotation . . . . . . . . . . 11

3.3 Missing message validation may allow griefing . . . . . . . . . . . . . . 12

3.4 Signatures may be reused across different contracts . . . . . . . . . . . 14

3.5 Withdrawal and validator update signatures include no action . . . . . 16

3.6 Unchecked transferFrom return value in deposit . . . . . . . . . . . . . 18

4 Discussion 19

4.1 Signature checks do not require arrays of signers . . . . . . . . . . . . . 19

4.2 Possible improvements for contract transparency . . . . . . . . . . . . 19

Zellic 1 Hyperliquid



5 Threat Model 21

5.1 Module: Bridge2.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Audit Results 38

6.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Zellic 2 Hyperliquid



About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.

Zellic 3 Hyperliquid

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


1 Executive Summary

Zellic conducted a security assessment for the Hyperliquid contributors from July 10th
to July 12th, 2023. During this engagement, Zellic reviewed Hyperliquid’s code for
security vulnerabilities, design issues, and general weaknesses in security posture.

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to
answer. These questions are agreed upon through close communication between
Zellic and the client. In this assessment, we sought to answer the following questions:

• Is the interaction between the bridge and L1, as well as the locking logic,
implemented correctly and securely?

• Are there any vulnerabilities present in the bridge that could potentially be
exploited to steal funds?

• Are there any bugs that result in behavior that deviates from the intended L1
behavior? This includes issues such asmisbehaving validators ormalfunctioning
validator set transitions.

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• Other smart contracts part of the Hyperliquid system
• Off-chain components, such as validators
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.

1.3 Results

During our assessment on the scoped Hyperliquid contracts, we discovered six
findings. No critical issues were found. One was of high impact, one was of medium
impact, and the remaining findings were informational in nature.

Zellic 4 Hyperliquid



Additionally, Zellic recorded its notes and observations from the assessment for
the Hyperliquid contributors’ benefit in the Discussion section (4) at the end of the
document.

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 1

Medium 1

Low 0

Informational 4

High
Medium

Info

Zellic 5 Hyperliquid



2 Introduction

2.1 About Hyperliquid

Hyperliquid is an order book perpetual futures DEX. Hyperliquid runs on its own L1,
a purpose-built blockchain using the Tendermint SDK that is performant enough to
operate the whole platform –– every order, cancel, trade, and liquidation happens
transparently on chain with block latency < 1 second.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security
auditing including both automated testing and manual review. These processes can
vary significantly per engagement, but the majority of the time is spent on a thorough
manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses
primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. Depending on the engagement, we may also employ sophisticated
analyzers such as model checkers, theorem provers, fuzzers, and so on as necessary.
We also perform a cursory review of the code to familiarize ourselves with the
contracts.

Business logic errors. Business logic is the heart of any smart contract application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like
unrealistic tokenomics or dangerous arbitrage opportunities. To the best of our
abilities, time permitting, we also review the contract logic to ensure that the
code implements the expected functionality as specified in the platform’s design
documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks,
oracle price manipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the code base in general.

Zellic 6 Hyperliquid



We look for violations of industry best practices and guidelines and code quality
standards. We also provide suggestions for possible optimizations, such as gas
optimization, upgradeability weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact. Instead, we
assign it on a case-by-case basis based on our judgment and experience. Both the
severity and likelihood of an issue affect its impact. For instance, a highly severe issue’s
impact may be attenuated by a low likelihood. We assign the following impact ratings
(ordered by importance): Critical, High, Medium, Low, and Informational.

Zellic organizes its reports such that the most important findings come first in the
document, rather than being strictly ordered on impact alone. Thus, we may
sometimes emphasize an “Informational” finding higher than a “Low” finding. The key
distinction is that although certain findings may have the same impact rating, their
importancemay differ. This varies based on various soft factors, like our clients’ threat
models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of
security issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Hyperliquid Contracts

Repository https://github.com/hyperliquid-dex/contracts

Version contracts: 43b5267c58778e5e24640c9abac06cb608d63c40

Programs • Bridge2

• Signature

Type Solidity

Platform Arbitrum

2.4 Project Overview

Zellic was contracted to perform a security assessment with three consultants for a
total of four person-days. The assessment was conducted over the course of one
calendar week.

Zellic 7 Hyperliquid

https://github.com/hyperliquid-dex/contracts


Contact Information

The following project manager was associated with the engagement:

Chad McDonald, Engagement Manager
chad@zellic.io

The following consultants were engaged to conduct the assessment:

Filippo Cremonese, Engineer
fcremo@zellic.io

Kuilin Li, Engineer
kuilin@zellic.io

Daniel Lu, Engineer
daniel@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

July 10, 2023 Kick-off call

July 10, 2023 Start of primary review period

July 12, 2023 End of primary review period

August 8, 2023 Closing call

Zellic 8 Hyperliquid

mailto:chad@zellic.io
mailto:fcremo@zellic.io
mailto:kuilin@zellic.io
mailto:daniel@zellic.io


3 Detailed Findings

3.1 Withdrawal finalization does not work

• Target: Bridge2
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

The single entry point for finalizing withdrawals is the batchedFinalizeWithdrawals
function, which iterates over an array of messages and calls finalizeWithdrawal on
each.

Both functions have the nonReentrantmodifier.

function batchedFinalizeWithdrawals(
bytes32[] calldata messages

) external nonReentrant whenNotPaused {
checkFinalizer(msg.sender);

uint64 end = uint64(messages.length);
for (uint64 idx; idx < end; idx+)) {

finalizeWithdrawal(messages[idx]);
}

}

function finalizeWithdrawal(bytes32 message)
private nonReentrant whenNotPaused {

require(!finalizedWithdrawals[message], ”Withdrawal already finalized”);
Withdrawal memory withdrawal = requestedWithdrawals[message];

checkDisputePeriod(withdrawal.requestedTime,
withdrawal.requestedBlockNumber);

finalizedWithdrawals[message] = true;
usdcToken.transfer(withdrawal.user, withdrawal.usdc);
emit FinalizedWithdrawal(

FinalizedWithdrawalEvent({
user: withdrawal.user,

Zellic 9 Hyperliquid



usdc: withdrawal.usdc,
nonce: withdrawal.nonce,
message: withdrawal.message

})
);

}

Impact

Any finalization attempt will immediately revert because of the nonReentrant mod-
ifier on finalizeWithdrawal, preventing any withdrawal from the bridge from being
finalized.

We classified this issue as high severity due to the fundamental importance of the
finalization step for the contract operation.

Recommendations

We recommend removing the nonReentrantmodifier from the private finalizeWithd
rawal function and adding test cases to ensure its correct behavior.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit e5b7e068.

Zellic 10 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/e5b7e068240f9055ace36fead91e81a3465481f6


3.2 Disputed actions are not blocked by validator rotation

• Target: Bridge2
• Category: Business Logic
• Likelihood: Low

• Severity: High
• Impact: Medium

Description

The bridge implements a two-step mechanism for performing withdrawals and val-
idator set changes. First, a request authorizing the action has to be submitted. The
request has to be signed by a two thirds majority of validators. If the request is valid,
it is recorded in the contract storage.

The second step, finalization, actually performs the requested action and can only
occur after a dispute period has elapsed. The dispute period gives the opportunity to
pause the contract in the event of one or more validators being compromised. Un-
pausing the contract also requires to rotate the validator set, allowing replacement of
the compromised validators.

However, the current implementation does not allow to remove pending operations.
For example, if amaliciouswithdrawalwas detected and the contractwas paused, the
operationwould stay pending and could be processedwhen the contract is unpaused.

Impact

If a sufficiently large subset of hot wallets is compromised, the dispute period does
not effectively allow malicious withdrawals or validator set updates to be blocked.
Even if validators are rotated, pending actions would still be able to be finalized when
the contract is unpaused.

Recommendations

We recommend adding a mechanism for invalidating pending messages. For exam-
ple, this could be implemented in the emergencyUnlock function.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit 8c4a182a.

Zellic 11 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/8c4a182aecd777a52c92f9069017b14c18efc4b2


3.3 Missing message validation may allow griefing

• Target: Bridge2
• Category: Business Logic
• Likelihood: Low

• Severity: Informational
• Impact: Informational

Description

The finalizeWithdrawals function does not check that the givenmessage corresponds
to an existing withdrawal request. Since the uninitialized values of the corresponding
withdrawal data will be zero, the call to checkDisputePeriodwill pass:

function checkDisputePeriod(uint64 time, uint64 blockNumber)
private view {

require(
block.timestamp > time + disputePeriodSeconds &)

(uint64(block.number) - blockNumber) * blockDurationMillis
> 1000 * disputePeriodSeconds,
”Still in dispute period”

);
}

Impact

Whenmessages do not correspond to existing withdrawals, they will cause a transfer
of zero tokens to the zero address. In the case of USDC on Arbitrum, this will currently
result in a revert. However, if this logic is reused for other ERC-20 tokens, there is no
guarantee that such a call will be blocked.

Then, although the message does not correspond to an existing withdrawal, it will be
marked as finalized, anyway:

finalizedWithdrawals[message] = true;
usdcToken.transfer(withdrawal.user, withdrawal.usdc);

Thus, any future attempts to finalize that message will fail. If an attacker is able to

1. predict upcoming nonces, or

2. front-run withdrawal requests,

Zellic 12 Hyperliquid



they would be able to block real withdrawals from being finalized.

Recommendations

Consider checking that messages correspond to existing withdrawals during the fi-
nalization process. In the case of USDC, this has the additional benefit of improving
the error message.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit 1c8d3333.

Zellic 13 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/1c8d333325f4f9d019a4d7ee94bc970d7f122e23


3.4 Signatures may be reused across different contracts

• Target: Signature
• Category: Business Logic
• Likelihood: Low

• Severity: Informational
• Impact: Informational

Description

On the Arbitrum side, the bridge operates by allowing users to perform actions ap-
proved by validators. For instance, to request a withdrawal, the user needs at least
two thirds of the validators (if validator power is equally distributed) to sign off us-
ing their in-memory hot keys. The bridge checks these signatures, and if the user is
indeed permitted to perform the withdrawal, it transfers them the USDC.

Currently, signatures include a domain separator to prevent reuse across different
chains and projects. This is important to ensure that they are specific to the context
in which they are used and cannot be maliciously repurposed.

function makeDomainSeparator() view returns (bytes32) {
return

keccak256(
abi.encode(
EIP712_DOMAIN_SEPARATOR,
keccak256(bytes(”Exchange”)),
keccak256(bytes(”1”)),
block.chainid,
VERIFYING_CONTRACT

)
);

}

However, the signatures do not include the contract or token address.

Impact

The fact that the domain separator does not by default include any contract-specific
data introduces somemaintenance risk: the protocolmust ensure that signatures can-
not be reused across contracts on the same chain.

For instance, if the exact same contract were used for a different ERC-20 token, an
attacker may be able to steal funds by replaying withdrawal messages.

Zellic 14 Hyperliquid



Recommendations

We recommend including either the contract address or the token address in signa-
tures (either the domain separator or in themessage itself) to increase robustness and
avoid future issues.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit 97225667.

Zellic 15 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/97225667d8ce6f1d79a230d6b0e42077789a3fc9


3.5 Withdrawal and validator update signatures include no ac-
tion

• Target: Bridge2
• Category: Business Logic
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

To include important parameters in signatures, the bridge packs them together and
hashes them. This data is stored in the connectionId slot of the Agent struct, which
has an associated function hash for creating the actual signed message.

struct Agent {
string source;
bytes32 connectionId;

}

In some functions, the hashed data in connectionId includes the name of an action:

Agent memory agent = Agent(”a”, keccak256(abi.encode(”modifyLocker”,
locker, isLocker, nonce)));

However, the connectionIds used in the requestWithdrawal and updateValidatorSet
Agent’s do not. Instead, they rely on the arguments being different to prevent valid
signatures from being used in the wrong function. From requestWithdrawal and upda
teValidatorSet:

Agent memory agent = Agent(”a”, keccak256(abi.encode(msg.sender, usdc,
nonce)));

Agent memory agent = Agent(
”a”,
keccak256(

abi.encode(
newValidatorSet.epoch,
newValidatorSet.hotAddresses,
newValidatorSet.coldAddresses,
newValidatorSet.powers

)
)

Zellic 16 Hyperliquid



);

Impact

This introduces some maintenance risk: updating these signature arguments may
have the unintended consequence of allowing confusion between the two types. That
might allow users to use withdrawal signatures to maliciously update validators.

Recommendations

We recommend consistently prefixing all messages with the action to guarantee that
changes in arguments do not cause bugs.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit b198269c.

Zellic 17 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/b198269cc5e8e30de9e808328bab8ce42f92207a


3.6 Unchecked transferFrom return value in deposit

• Target: Bridge2
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Informational
• Impact: Informational

Description

The bridge handles deposits by transferring an amount of USDC from the sender and
emitting a corresponding event.

/) An external function anyone can call to deposit usdc into the bridge.
/) A deposit event will be emitted crediting the L1 with the usdc.
function deposit(uint64 usdc) external whenNotPaused nonReentrant {

address user = msg.sender;
emit Deposit(DepositEvent({ user: user, usdc: usdc }));
usdcToken.transferFrom(user, address(this), usdc);

}

The return value of the transferFrom call is not checked. Although USDC on Arbitrum
will currently revert when the transfer is not permitted (e.g., if the approval amount is
insufficient), this behavior is not required by the ERC-20 specification. Instead, trans
ferFrommust return a boolean indicating whether it was successful.

Impact

If this logic were reused for other token types, it could potentially result in a loss of
funds. Users would be able to arbitrarily call deposit and cause the corresponding
event to be emitted.

Recommendations

Consider checking the return value as well, or use the SafeERC20 OpenZeppelin li-
brary and its safeTransferFrom function.

Remediation

This issue has been acknowledged by the Hyperliquid contributors, and a fix was im-
plemented in commit 57df1c10.

Zellic 18 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/57df1c1050216bd922e9c9f01c78ded2594f1a4b


4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment. These discussion notes are not necessarily security related
and do not convey that we are suggesting a code change.

4.1 Signature checks do not require arrays of signers

The requestWithdrawal, modifyLocker, and emergencyUnlock functions accept a sign
ers array. This is passed into checkValidatorSignatures to verify that the action is
authorized:

function checkValidatorSignatures(
bytes32 message,
ValidatorSet memory activeValidatorSet, /) Active set of all L1
validators

address[] memory signers, /) Subsequence of the active L1 validators
that signed the message

Signature[] memory signatures,
bytes32 validatorSetHash

) private view {

The array of signers is not necessary for performing the validator check. Instead, chec
kValidatorSignatures could simply recover the array of signers and check that it is a
sufficientlyweighted subsequence of the chosen validator set. Omitting this argument
from these external functions would simplify the interface and save gas.

Note: this issue was addressed in commit d355798d; the signers array is no longer
required to be provided by the user, and the signer’s address recovered from the in-
dividual signatures is used instead.

4.2 Possible improvements for contract transparency

Currently, the address of the bridged token is held as a private variable in contract
storage. We encourage the Hyperliquid contributors to consider making it public,
which would let users more easily verify the asset bridged.

Additionally, nValidators is currently exposed for convenience, but it may inadver-
tently misrepresent the number of validators. For example, if multiple members of

Zellic 19 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/d355798d9c28e7fe0e66d81b622f114bcc619d95


the validator set have the same address, the power of the validator is the sum of each
occurrence’s power. However, nValidatorswould count each occurrence separately.

Note: the visibility of the usdcToken variable containing the address of the bridged
token was changed to public in commit 7a2f1a82.

Zellic 20 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/7a2f1a82812b49599400083eb7f7608b7e1e4638


5 Threat Model

This provides a full threat model description for various functions. As time permit-
ted, we analyzed each function in the contracts and created a written threat model
for some critical functions. A threat model documents a given function’s externally
controllable inputs and how an attacker could leverage each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat
model in this section does not necessarily suggest that a function is safe.

Please note that our threat model was based on commit 43b5267c, which repre-
sents a specific snapshot of the codebase. Therefore, it’s important to understand
that the absence of certain tests in our report may not reflect the current state of
the test suite.

During the remediation phase, the Hyperliquid contributors took proactive steps
to address the findings by adding unit test cases for batchedFinalizeWithdrawals
in commit 6a1ddbc8. This demonstrates their dedication to enhancing the code
quality and overall reliability of the system, which is commendable.

5.1 Module: Bridge2.sol

Function: batchedFinalizeWithdrawals(byte[32][] messages)

This function can be used to finalize a batch of pending withdrawals, transferring the
owed USDC amounts.

Inputs

• messages
– Control: Arbitrary.

– Constraints: Each message must not be already finalized and correspond
to a withdrawal for which the dispute period has elapsed.

– Impact: Hashes identifying the withdrawals to be finalized.

Branches and code coverage (including function calls)

Intended branches

• For each withdrawal message, it checks the dispute period and ensures the

Zellic 21 Hyperliquid

https://github.com/hyperliquid-dex/contracts/commit/43b5267c58778e5e24640c9abac06cb608d63c40
https://github.com/hyperliquid-dex/contracts/commit/6a1ddbc83ea191166ce9c9ed5d693f056f7e45d6


withdrawal was not already processed, then transfers the tokens.
□ Test coverage

Negative behavior

• Reverts if the withdrawal was already processed.
□ Negative test

• Reverts if the dispute period has not elapsed.
□ Negative test

Function call analysis

• rootFunction -> finalizeWithdrawal(messages[idx])
– What is controllable? messages[idx].
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not a concern (USDC makes no external
calls).

• finalizeWithdrawal -> checkDisputePeriod(withdrawal.requestedTime, withd
rawal.requestedBlockNumber)
– What is controllable? Nothing directly.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• finalizeWithdrawal -> usdcToken.transfer(withdrawal.user, withdrawal.usd
c)
– What is controllable? Nothing directly.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not a concern (USDC makes no external
calls).

Function: changeBlockDurationMillis(uint64 newBlockDurationMillis, u
int64 nonce, ValidatorSet activeColdValidatorSet, address[] signers,
Signature[] signatures)

This function can be used to change the block duration.

Inputs

• newBlockDurationMillis
– Control: Arbitrary.

Zellic 22 Hyperliquid



– Constraints: None.

– Impact: New block duration.
• nonce

– Control: Arbitrary.

– Constraints: None.

– Impact: Nonce used as part of the signed hash.
• activeColdValidatorSet

– Control: Arbitrary.

– Constraints: Hash must match the stored validator set hash.

– Impact: Active set of validators — used to validate signatures.
• signers

– Control: Arbitrary.

– Constraints: Length must match signatures.
– Impact: Addresses of the signers of the action.

• signatures
– Control: Arbitrary.

– Constraints: Each element must be a valid signature for the corresponding
address in signers.

– Impact: Signatures authorizing the action.

Branches and code coverage (including function calls)

Intended branches

• Checks that the same message has not been used, checks the validity of the
validator signatures, and updates the block duration.

4□ Test coverage

Negative behavior

• Reverts if the same message has already been used.
□ Negative test

• Reverts if the hash of the provided validator set does not match the stored one.
□ Negative test

• Reverts if a signature does not correspond with the signer.
□ Negative test

• Reverts if the signers’ cumulative voting power is insufficient.
□ Negative test

• Reverts if the length of the signers and signatures do not match.
□ Negative test

Zellic 23 Hyperliquid



Function call analysis

• rootFunction -> hash(agent)
– What is controllable? agent, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? Not
controllable, used to identify the transfer.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts and reentrancy cannot happen.

• rootFunction -> checkMessageNotUsed(message)
– What is controllable? message, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• rootFunction -> checkValidatorSignatures(...)))
– What is controllable? message (some parts of the hash), activeColdValida

torSet, signers, and signatures.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

Function: changeDisputePeriodSeconds(uint64 newDisputePeriodSeconds,
uint64 nonce, ValidatorSet activeColdValidatorSet, address[] signers,
Signature[] signatures)

This function can be used to change the dispute period.

Inputs

• newDisputePeriodSeconds
– Control: Arbitrary.

– Constraints: None.

– Impact: New dispute period.
• nonce

– Control: Arbitrary.

– Constraints: None.

– Impact: Nonce used as part of the signed hash.
• activeColdValidatorSet

– Control: Arbitrary.

– Constraints: Hash must match the current cold validator set hash.

– Impact: Current active validator set — used to validate the signatures.

Zellic 24 Hyperliquid



• signers
– Control: Arbitrary.

– Constraints: Length must match signatures.
– Impact: Addresses of the signers of the action.

• signatures
– Control: Arbitrary.

– Constraints: Each element must be a valid signature for the corresponding
address in signers.

– Impact: Signatures authorizing the action.

Branches and code coverage (including function calls)

Intended branches

• Checks that the samemessage has not already been used and that the signature
is valid, then changes the dispute period.

4□ Test coverage

Negative behavior

• Reverts if the same message has already been used.
□ Negative test

• Reverts if the hash of the provided validator set does not match the stored one.
□ Negative test

• Reverts if a signature does not correspond with the signer.
□ Negative test

• Reverts if the signers’ cumulative voting power is insufficient.
□ Negative test

• Reverts if the length of the signers and signatures do not match.
□ Negative test

Function call analysis

• rootFunction -> hash(agent)
– What is controllable? agent, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? Not
controllable — used to identify the transfer.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts and reentrancy cannot happen.

• rootFunction -> checkMessageNotUsed(message)
– What is controllable? message, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

Zellic 25 Hyperliquid



– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• rootFunction -> checkValidatorSignatures(...)))
– What is controllable? message (some parts of the hash), activeColdValida

torSet, signers, and signatures.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

Function: deposit(uint64 usdc)

This function can be used to deposit USDC into the bridge.

Inputs

• usdc
– Control: Arbitrary.

– Constraints: None (apart from the caller having sufficient balance).

– Impact: Amount to be deposited.

Branches and code coverage (including function calls)

Intended branches

• Deposits USDC into the contract and emits a corresponding event.
4□ Test coverage

Negative behavior

• Reverts if user balance is insufficient or USDC transfer fails.
□ Negative test

Function call analysis

• rootFunction -> usdcToken.transferFrom(user, address(this), usdc)
– What is controllable? usdc.
– If return value controllable, how is it used and how can it go wrong? Not
controlled nor used.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (USDC makes no external
calls).

Zellic 26 Hyperliquid



Function: emergencyLock()

This function can be used to lock the contract.

Branches and code coverage (including function calls)

Intended branches

• Ensures the caller is authorized and locks the contract.
4□ Test coverage

Negative behavior

• Reverts if the caller is not authorized.
4□ Negative test

Function: emergencyUnlock(ValidatorSetUpdateRequest newValidatorSet,
ValidatorSet activeColdValidatorSet, address[] signers, Signature[]
signatures, uint64 nonce)

This function can be used to change the validator set and unlock the contract.

Inputs

• newValidatorSet
– Control: Arbitrary.

– Constraints: hotAddresses, coldAddresses, and powers array lengths must
match; newValidatorSet.epoch > activeHotValidatorSet.epoch; and cu-
mulative power must be greater than zero.

– Impact: New validator set.
• activeColdValidatorSet

– Control: Arbitrary.

– Constraints: Hash must match the stored active cold validator set hash.

– Impact: Set of active cold validators — used to validate signatures.
• signers

– Control: Arbitrary.

– Constraints: Length must match signatures.
– Impact: List of signers for the unlock action.

• signatures
– Control: Arbitrary.

– Constraints: Each element must be a valid signature for the corresponding
address in signers.

– Impact: Signatures authorizing the action.

Zellic 27 Hyperliquid



• nonce
– Control: Arbitrary.

– Constraints: None.

– Impact: Nonce used as part of the signed message.

Branches and code coverage (including function calls)

Intended branches

• Checks that the same action has not already been performed and that the sig-
natures are valid, updates the validator set, and unlocks the contract.

4□ Test coverage

Negative behavior

• Reverts if the same message has already been used.
□ Negative test

• Reverts if the hash of the provided validator set does not match the stored one.
□ Negative test

• Reverts if a signature does not correspond with the signer.
□ Negative test

• Reverts if the signers’ cumulative voting power is insufficient.
□ Negative test

• Reverts if the length of the signers and signatures do not match.
□ Negative test

Function call analysis

• rootFunction -> checkMessageNotUsed(message)
– What is controllable? message, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• rootFunction -> updateValidatorSetInner(...)))
– What is controllable? newValidatorSet, activeColdValidatorSet, signers,

signatures, and message (indirectly, it is a hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> checkNewValidatorPowers(newValidatorSet.power
s)
– What is controllable? newValidatorSet.powers.

Zellic 28 Hyperliquid



– If return value controllable, how is it used and how can it go wrong? Used
as the sum of the voting powers.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> checkValidatorSignatures(message, activeValid
atorSet, signers, signatures, validatorSetHash)
– What is controllable? message, activeValidatorSet, signers, and signatur

es.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• checkValidatorSignatures -> makeValidatorSetHash(activeValidatorSet)
– What is controllable? activeValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Not
meaningfully controllable, compared against the expected validator set
hash.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• checkValidatorSignatures -> recoverSigner(message, signatures[signerIdx]
, domainSeparator)
– What is controllable? message and signatures[signerIdx].
– If return value controllable, how is it used and how can it go wrong? Not
meaningfully controllable, compared against the expected signer; it is not
possible to forge a signer’s address.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• updateValidatorSetInner -> makeValidatorSetHash(newHotValidatorSet)
– What is controllable? newHotValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Used
as the hash of the new hot validator set.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> makeValidatorSetHash(newColdValidatorSet)
– What is controllable? newHotValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Used
as the hash of the new cold validator set.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• rootFunction -> finalizeValidatorSetUpdateInner()
– What is controllable? N/A.

Zellic 29 Hyperliquid



– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• rootFunction -> _unpause()
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts or reentrancy are not possible.

Function: finalizeValidatorSetUpdate()

This function can be called to finalize a validator set update, making it effective.

Branches and code coverage (including function calls)

Intended branches

• Check that an update is pending and that the dispute period has elapsed, then
finalizes the update by updating various storage variables.

4□ Test coverage

Negative behavior

• Reverts if no update is pending.
□ Negative test

• Reverts if the dispute period has not elapsed.
□ Negative test

Function call analysis

• rootFunction -> checkDisputePeriod(pendingValidatorSetUpdate.updateTime,
pendingValidatorSetUpdate.updateBlockNumber)
– What is controllable? Nothing directly.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• rootFunction -> finalizeValidatorSetUpdateInner()
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

Zellic 30 Hyperliquid



Function: modifyLocker(address locker, bool isLocker, uint64 nonce,
ValidatorSet activeColdValidatorSet, address[] signers, Signature[]
signatures)

This function can be used to grant or revoke authorization for the locker role, which
grants the ability to pause the contract.

Inputs

• locker
– Control: Arbitrary.

– Constraints: None.

– Impact: Address of the locker.
• isLocker

– Control: Arbitrary.

– Constraints: None.

– Impact: If true, the permission will be granted; otherwise, it will be re-
voked.

• nonce
– Control: Arbitrary.

– Constraints: None.

– Impact: Nonce used as part of the signed action.
• activeColdValidatorSet

– Control: Arbitrary.

– Constraints: The hash must match the stored cold validator set hash.

– Impact: The currently active set of cold validators.
• signers

– Control: Arbitrary.

– Constraints: Length must match signatures.
– Impact: Addresses of the signers for the request.

• signatures
– Control: Arbitrary.

– Constraints: Each element must be a valid signature for the corresponding
signers entry.

– Impact: Signatures authorizing the action.

Branches and code coverage (including function calls)

Intended branches

• Checks for signature reuse, checks the signatures’ validity, and grants/revokes

Zellic 31 Hyperliquid



permissions.
4□ Test coverage

Negative behavior

• Reverts if the same signature was already used.
□ Negative test

• Reverts if the validator set does not match the expected one.
□ Negative test

• Reverts if the sum of the signers’ voting power is insufficient.
□ Negative test

• Reverts if the length of the signers and signatures do not match.
□ Negative test

Function call analysis

• rootFunction -> hash(agent)
– What is controllable? agent, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? Not
controllable — used to identify the transfer.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts and reentrancy cannot happen.

• rootFunction -> checkMessageNotUsed(message)
– What is controllable? message, indirectly (some parts of the hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• rootFunction -> checkValidatorSignatures(...)))
– What is controllable? message (some parts of the hash), activeColdValida

torSet, signers, and signatures.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

Function: requestWithdrawal(uint64 usdc, uint64 nonce, ValidatorSet hot
ValidatorSet, address[] signers, Signature[] signatures)

This function can be used to request a withdrawal from the bridge.

Inputs

• usdc

Zellic 32 Hyperliquid



– Control: Arbitrary.

– Constraints: None directly (must match the signature).

– Impact: Amount to be withdrawn.
• nonce

– Control: Arbitrary.

– Constraints: None directly (must match the signature).

– Impact: Nonce used to deduplicate signatures.
• hotValidatorSet

– Control: Arbitrary.

– Constraints: The hash must match the current hot validator set hash.

– Impact: Validator set.
• signers

– Control: Arbitrary.

– Constraints: Elements must match the corresponding element in signatur
es.

– Impact: Array of addresses that signed the request.
• signatures

– Control: Array.

– Constraints: Must be valid signatures for the hash of the withdrawal re-
quest determined by the other parameters.

– Impact: Signatures authorizing the transfer.

Branches and code coverage (including function calls)

Intended branches

• Validates the validator set and the provided signature, and it records the pending
withdrawal.

4□ Test coverage

Negative behavior

• Reverts if the provided validator set does not match the recorded validator set
hash.
□ Negative test

• Reverts if a signature does not match the corresponding signer.
□ Negative test

• Reverts if the cumulative signing power is insufficient.
4□ Negative test

• Reverts if the same withdrawal was already requested.
□ Negative test

Zellic 33 Hyperliquid



Function call analysis

• rootFunction -> hash(agent)
– What is controllable? agent, indirectly (some parts of the hash)
– If return value controllable, how is it used and how can it go wrong? Not
controllable, used to identify the transfer

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts and reentrancy can’t happen

• rootFunction -> checkValidatorSignatures(message, hotValidatorSet, signe
rs, signatures, hotValidatorSetHash)
– What is controllable? message, hotValidatorSet, signers, and signatures.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• checkValidatorSignatures -> makeValidatorSetHash(activeValidatorSet)
– What is controllable? activeValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Not
meaningfully controllable, compared against the expected validator set
hash.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• checkValidatorSignatures -> recoverSigner(message, signatures[signerIdx]
, domainSeparator)
– What is controllable? message and signatures[signerIdx].
– If return value controllable, how is it used and how can it go wrong? Not
meaningfully controllable, compared against the expected signer; it is not
possible to forge a signer’s address.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

Function: updateValidatorSet(ValidatorSetUpdateRequest newValidatorSe
t, ValidatorSet activeHotValidatorSet, address[] signers, Signature[]
signatures)

This function can be called to initiate an update to the validator set.

Inputs

• newValidatorSet
– Control: Arbitrary.

– Constraints: hotAddresses, coldAddresses, and powers array lengths must

Zellic 34 Hyperliquid



match; newValidatorSet.epoch > activeHotValidatorSet.epoch; and cu-
mulative power must be greater than zero.

– Impact: New validator set.
• activeHotValidatorSet

– Control: Arbitrary.

– Constraints: makeValidatorSetHash(activeHotValidatorSet) =) hotValid
atorSetHash.

– Impact: Active validator set — used to validate the request.
• signers

– Control: Arbitrary.

– Constraints: Length must match signatures.
– Impact: Addresses of the signers of the request.

• signatures
– Control: Arbitrary.

– Constraints: Length must match signers, and signatures must correspond
with signers entries.

– Impact: Signatures authorizing the validator set update.

Branches and code coverage (including function calls)

Intended branches

• Validates the new set, checks the signature from the current set, and stores the
pending validator set update.

4□ Test coverage

Negative behavior

• Reverts if the provided active validator hash set does not match.
4□ Negative test

• Reverts if the lengths of the arrays in the new validator set do not match.
□ Negative test

• Reverts if the epoch of the new validator set is not greater than the epoch of the
active validator set.

4□ Negative test
• Reverts if a signature does not match the corresponding signer.

4□ Negative test
• Reverts if a signature is invalid.

□ Negative test
• Reverts if the signers’ total voting power is insufficient.

4□ Negative test

Zellic 35 Hyperliquid



• Reverts if the new total voting power is zero.
□ Negative test

Function call analysis

• rootFunction -> makeValidatorSetHash(activeHotValidatorSet)
– What is controllable? activeHotValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Com-
pared against the expected hot validator set hash.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• rootFunction -> hash(agent)
– What is controllable? agent (indirectly).
– If return value controllable, how is it used and how can it go wrong? Hash
representing the action being performed.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• rootFunction -> updateValidatorSetInner(...)))
– What is controllable? newValidatorSet, activeHotValidatorSet, signers,

signatures, and message (indirectly, it is a hash).
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> checkNewValidatorPowers(newValidatorSet.power
s)
– What is controllable? newValidatorSet.powers.
– If return value controllable, how is it used and how can it go wrong? Used
as the sum of the voting powers.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> checkValidatorSignatures(message, activeValid
atorSet, signers, signatures, validatorSetHash)
– What is controllable? message, activeValidatorSet, signers, and signatur

es.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• checkValidatorSignatures -> makeValidatorSetHash(activeValidatorSet)
– What is controllable? activeValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Not

Zellic 36 Hyperliquid



meaningfully controllable, compared against the expected validator set
hash.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• checkValidatorSignatures -> recoverSigner(message, signatures[signerIdx]
, domainSeparator)
– What is controllable? message and signatures[signerIdx].
– If return value controllable, how is it used and how can it go wrong? Not
meaningfully controllable, compared against the expected signer; it is not
possible to forge a signer’s address.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy cannot happen (no external calls).

• updateValidatorSetInner -> makeValidatorSetHash(newHotValidatorSet)
– What is controllable? newHotValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Used
as the hash of the new hot validator set.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

• updateValidatorSetInner -> makeValidatorSetHash(newColdValidatorSet)
– What is controllable? newHotValidatorSet.
– If return value controllable, how is it used and how can it go wrong? Used
as the hash of the new cold validator set.

– What happens if it reverts, reenters, or does other unusual control flow?
Reverts bubble up; reentrancy is not possible (no external calls).

Zellic 37 Hyperliquid



6 Audit Results

At the time of our audit, the audited code was not deployed to the Arbitrum Mainnet.

During our assessment on the scoped Hyperliquid contracts, we discovered six find-
ings. No critical issues were found. One was of high impact, one was of medium
impact, and the remaining findingswere informational in nature. TheHyperliquid con-
tributors acknowledged all findings and implemented fixes.

6.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
code added to the project after the audit version of our assessment. Furthermore,
because a single assessment can never be considered comprehensive, we always
recommend multiple independent assessments paired with a bug bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 38 Hyperliquid


	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Hyperliquid
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Withdrawal finalization does not work
	Disputed actions are not blocked by validator rotation
	Missing message validation may allow griefing
	Signatures may be reused across different contracts
	Withdrawal and validator update signatures include no action
	Unchecked transferFrom return value in deposit

	Discussion
	Signature checks do not require arrays of signers
	Possible improvements for contract transparency

	Threat Model
	Module: Bridge2.sol

	Audit Results
	Disclaimer


